Hypervalent Bond Formation and Interaction between Heavier Group 16 Elements in the Dihalides and Oxide of 5H,7H-Dibenzo[b,g][1,5]-ditellurocin and -telluraselenocin Hisashi FUJIHARA,* Toshinori UEHARA, Tomoki ERATA,† and Naomichi FURUKAWA* Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305 †Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305 The reaction of 5H,7H-dibenzo[b,g][1,5]ditellurocin with I₂ resulted in the formation of the diiodo-ditellurane as a new class of bis-hypervalent chalcogenide. Treatment of the dibromo-derivative of 5H,7H-dibenzo[b,g][1,5]telluraselenocin with aqueous NaOH solution afforded exclusively the telluroxide which showed the strong transannular hypervalent interaction between the tellurinyl group and the selenyl group as evidenced by 77 Se and 125 Te NMR spectroscopy. Transannular interaction or bond formation (e.g., hypervalent bond) between heteroatoms in mediumsized heterocyclic compounds containing nitrogen, phosphorus, and sulfur atoms has been well studied. $^{1,2)}$ However, the properties of medium-sized tellurium heterocycles have received less attention. We have now synthesized new eight-membered ring tellurium heterocycles, 5H,7H-dibenzo[b,g][1,5]ditellurocin (1) and 5H,7H-dibenzo[b,g][1,5]telluraselenocin (4), to investigate the conformational property, and the transannular interaction and bond formation between heavier group 16 elements. Herein we report the synthesis and the conformational properties of 1 and 4, together with the characterization of a new ditellurane with Te(IV)-Te(IV) bond of 1, and the transannular hypervalent interaction between the tellurinyl group and the selenyl group in the telluroxide 6. Compounds 1 and 4 were synthesized as follows. Bis(2-bromomethylphenyl)tellurium dibromide³⁾ (1.00 g, 1.59 mmol) in CHCl₃ (300 mL) was treated with Na₂Te (0.28 g, 1.59 mmol) or Na₂Se in EtOH (80 mL) using a high dilution technique at room temperature under an Ar atmosphere. The mixture was stirred at room temperature for 30 min. After usual work-up, the crude product was purified by silica-gel column chromatography (eluent, CH₂Cl₂) to give 1 or 4.⁴⁾ In the conformational properties for eight-membered rings of 1 and 4, two typical different conformers such as chair and boat-forms can exist.⁵⁾ The conformers can be assigned by the ¹H NMR spectral data for benzylic protons of the eight-membered ring.⁵⁾ The ¹H NMR spectrum of 1 in CDCl₃ at 25 °C shows the benzylic methylene protons as a broad singlet at δ 4.08 and an AB type absorption at δ 4.22 and 5.48 (J=12 Hz); the former resonance is assigned to the boat form (53%), and the latter pair to the chair form (47%) (Table 1). These conformers can also be characterized by ¹²⁵Te NMR spectroscopy;⁶⁾ the ¹²⁵Te NMR spectrum of 1 in CHCl₃ at 25 °C shows *four* peaks at δ 553 (boat) and 565 (chair) for -TeAr, and δ 677 (boat) and 703 (chair) for -TeCH₂Ar, respectively, the ratio of the conformers being consistent with that obtained from the ¹H NMR spectrum.⁶⁾ Treatment of the tellurocin 1 (100 mg, 0.23 mmol) with iodine (64 mg, 0.25 mmol) in CH₂Cl₂ (20 mL) under an Ar atmosphere at room temperature for overnight resulted in the formation of the diiodo-ditellurane 3 as an orange solid (96% yield), mp 132.5-133 °C (decomp) (Scheme 1).7,8) The compound 3 was analyzed by ¹H, ¹³C, and ¹²⁵Te NMR spectroscopy (Table 1) and elemental analysis. The benzylic methylene proton signals of 1 in CDCl₃ disappeared and new singlet peak appeared at δ 4.99 of 3 in (CD₃)₂SO, and the signal of the methylene carbon atoms shifted to 45.9 ppm from 12.1 and 14.1 ppm of 1, in which those spectra indicate that 3 is a single conformer, i.e., boat form. More significant spectroscopic evidence for the formation of 3 was obtained in the ¹²⁵Te NMR spectrum. The proton-decoupled ¹²⁵Te NMR spectrum of 3 in Me₂SO exhibits two resonances at δ 602 (-TePh) and at δ 946 (-TeCH₂Ph) (ratio 1:1) indicating the downfield shift; those resonances are assigned to the tellurane structure, 9b) particularly, the satellite peaks due to the 125Te-125Te coupling (large coupling constant of $J_{\text{Te-Te}} = 1283 \text{ Hz}$) are observed. 9b,10,11) This result clearly indicates the bond formation between two tellurium atoms. The iodine of 3 does not exist as the ion form, since the ¹²⁷I NMR spectrum of 3 in Me₂SO shows no absorption of iodide ion. The ditellurane 3 may be formed as follows: 1 reacts with I2 to generate the iodo-telluronium(III) ion (2) which is stabilized by the remote tellurium atom to give finally diiodo-ditellurane (IV) (3) (Scheme 1). This ditellurane 3 is a new class of hypervalent Te $$I_2$$ I_2 I_2 I_2 I_2 I_2 I_2 I_3 I_4 I_4 I_5 I_6 I_7 I_8 I Table 1. NMR Spectral Data for Compounds 1, 3, 4, 5, and 6a) | Chemical shift, δ | | | | |--------------------------|---|---|--------------------------------------| | Compd | | 13C | ¹²⁵ Te / ⁷⁷ Se | | 1 | 4.08 (brs),
4.22, 5.48 (ABq, <i>J</i> =12 Hz),
6.86-7.27 (m), 7.78-8.25 (m) | 12.1, 14.1, 117.0, 118.5,
126.5, 126.8, 127.0, 129.3,
129.4, 130.6, 137.2, 144.2,
147.7, 152.6 | 553, 565
677, 703 | | 3 | 4.99 (brs, 4H),
7.30 (t, <i>J</i> =8 Hz, 2H), 7.44 (t, <i>J</i> =8 Hz, 2H),
7.63 (d, <i>J</i> =8 Hz, 2H), 7.93 (d, <i>J</i> =8 Hz, 2H) | 45.9, 127.6, 128.9,
130.3, 131.5, 137.1,
142.7 | 602, 946 | | 4 | 3.74, 3.92 (ABq, <i>J</i> =13 Hz),
4.24, 5.18 (ABq, <i>J</i> =13 Hz),
6.96-7.35 (m), 7.69-8.28 (m) | 27.8, 36.0, 117.7, 118.4,
127.0, 127.2, 127.4, 129.3,
130.4, 130.5, 133.5, 143.8,
145.8, 150.0 | 559, 581 /
398, 425 (Se) | | 5 | 4.64, 5.13 (ABq, <i>J</i> =15 Hz, 4H),
7.46-7.65 (m, 6H), 8.50-8.53 (m, 2H) | 39.7, 129.4, 130.9, 131.0, 131.9, 134.6, 143.2 | 1239 /
361 (Se) | | 6 | 3.90, 4.24 (ABq, <i>J</i> =14 Hz, 4H),
7.22 (d, <i>J</i> =8 Hz, 2H), 7.32 (t, <i>J</i> =8 Hz, 2H),
7.45 (t, <i>J</i> =8 Hz, 2H), 8.33 (d, <i>J</i> =8 Hz, 2H) | 29.7, 129.0, 129.9,
130.3, 131.0, 135.5,
140.1 | 1159 /
233 (Se) | a) ¹H, ¹³C, ⁷⁷Se, and ¹²⁵Te NMR data for 1, 4, and 6 in CDCl₃; for 3 and 5 in (CD₃)₂SO. tellurium compound. Although hypervalent organosulfur compounds, sulfuranes, in group 16 elements have been widely studied in structural and theoretical aspects, a little attention has been devoted to multicoordinated tellurium compounds.^{9,12,13}) In contrast, much less is known about the chemistry of bis-hypervalent bonds with adjacent two hypervalent bonding species.¹⁴) Thus, the transannular bond formation between two tellurium atoms of 1 was found in the reaction of 1 with iodine. Therefore, in order to confirm the transannular interaction between two different chalcogen atoms, the telluraselenocin 4 has been prepared. The multinuclear NMR spectral data of 4 indicate the existence of two conformers, boat form (58%) and chair form (42%), in CHCl₃ at -50 °C (Table 1). The conformational study of selenium and tellurium heterocycles using ⁷⁷Se and ¹²⁵Te NMR spectroscopic method is little known. The reaction of 4 (1 equiv) with bromine (1 equiv) in CH₂Cl₂ at room temperature afforded the dibromoderivative 5 (90%).¹⁵⁾ Both ¹H, ¹³C, ⁷⁷Se, and ¹²⁵Te NMR spectra of 5 shows a single conformer (Table 1). The tetracoordinated tellurium species should be formed as evidenced by the ¹²⁵Te NMR spectrum of 5, though the discrete structure of 5 can not be assigned clearly as 5a or 5b or 5c.¹⁶⁾ The dibromo-derivative 5 led to exclusively the telluroxide 6 (80%) upon treatment with aqueous NaOH solution at room temperature (Scheme 2), none of the selenoxide of 4 was obtained.^{17,18)} The telluroxide 6 was stable and 6 exists solely as a single conformer, *boat* form, from -50 to +100 °C as evidenced from the variable-temperature ¹H NMR spectra, while the telluraselenocin 4 shows the existence of two conformers.¹⁹⁾ This finding can be rationally explained in terms of the transannular interaction between the tellurinyl group and the selenyl group of 6, since such interaction was confirmed by both ⁷⁷Se and ¹²⁵Te NMR spectroscopy; *e.g.*, the ¹H-decoupled ⁷⁷Se NMR spectrum of 6 in CHCl₃ showed the satellite peaks due to the ⁷⁷Se-¹²⁵Te coupling ($J_{Se-Te} = 467$ Hz).^{9b,10)} This is the first evidence for the transannular interaction between tellurinyl and selenyl groups using multinuclear NMR technique. This work was supported by the Grant-in-Aid for Scientific Research on Priority Area of Organic Unusual Valency No. 04217101 from the Ministry of Education, Science and Culture, Japan. One of us (H.F.) thanks a Scientific Research Grant (No. 03640435) from the Ministry of Education, Science and Culture, Japan. ## References 1) a) K. Ohkata, K. Takee, and K.-y. Akiba, *Bull. Chem. Soc. Jpn.*, **58**, 1946 (1985); b) K.-y. Akiba, K. Takee, Y. Shimizu, and K. Ohkata, *J. Am. Chem. Soc.*, **108**, 6320 (1986); c) K.-y. Akiba, K. Okada, - and K. Ohkata, Tetrahedron Lett., 27, 5221 (1986); d) K. Ohkata, M. Ohnishi, K. Yoshinaga, K.-y. Akiba, J. C. Rongione, and J. C. Martin, J. Am. Chem. Soc., 113, 9270 (1991). - 2) L. E. Carpenter II and J. G. Verkade, J. Am. Chem. Soc., 107, 7084 (1985). - 3) H. Fujihara, Y. Takaguchi, J.-J. Chiu, T. Erata, and N. Furukawa, Chem. Lett., 1992, 151. - 4) Compound 1: Mp 153-153.5 °C (decomp); MS, m/z 440 (M⁺). Anal. Found: C, 38.51; H, 2.76%. Calcd for C₁₄H₁₂Te₂: C, 38.62; H, 2.78%. 4: Mp 162-163 °C (decomp); MS, m/z 390 (M⁺). Anal. Found: C, 43.23; H, 2.79%. Calcd for C₁₄H₁₂SeTe: C, 43.47; H, 3.13%. - 5) R. P. Gellatly, W. D. Ollis, and I. O. Sutherland, J. Chem. Soc., Perkin Trans. 1, 1976, 913; L. E. Brieaddy, B. S. Hurlbert, and N. B. Mehta, J. Org. Chem., 46, 1630 (1981). - 6) The ⁷⁷Se and ¹²⁵Te chemical shifts are relative to Me₂Se and Me₂Te, respectively. The conformers were assigned by the integration of the selenium and tellurium peaks. The peak of benzylic telluride of 1 was determined by off-resonance method. - 7) It has been known that the reaction of aliphatic or aromatic monotellurides with halogens gave dialkyl or diaryl tellurium(IV) dihalides; the stability of which depends markedly on the alkyl group and on the halogen.^{9,13)} Those discrete tellurium(III) intermediates such as telluronium ions have been undetected. - 8) 3: Anal. Found: C, 24.30; H, 1.71%. Calcd for C₁₄H₁₂I₂Te₂: C, 24.40; H, 1.75%. - 9) a) "The Chemistry of Organic Selenium and Tellurium Compounds," ed by S. Patai and Z. Rappoport, Wiley, New York (1986), Vol. 1, Chaps. 3 and 14. The term tellurane has been used for tetracoordinate tellurium (IV) compounds. b) Chapter 6 of Ref. 9a. - 10) Both Se and Te atoms possess spin-1/2 nuclei with natural abundance (7.6% for ⁷⁷Se and 7.0% for ¹²⁵Te). - 11) Akiba and co-workers reported that the existence of a N-S bond of ^{15}N -labeled 6,7-dihydro-6,12-dimethyl-5*H*-dibenzo[*b,g*][1,5]thiazocinium PF₆⁻ salt in solution was confirmed by ^{15}N -S-CH₃ coupling $^{2}J_{CN}$. 1d) - 12) R. A. Hayes and J. C. Martin, "Sulfurane Chemistry" in "Organic Sulfur Chemistry, Theoretical and Experimental Advances," ed by F. Bernardi, I. G. Csizmadia, and A. Mangini, Elsevier, Amsterdam (1985), Chap. 8. - 13) "The Organic Chemistry of Tellurium," K. J. Irgolic, Gordon and Breach Science Publishers, New York, (1974). - 14) Perkins and Martin reported the existence of S(IV)-S(IV) bisulfurnayl dimer, in equilibrium with sulfuranyl radical as evidenced by ESR and NMR spectroscopy; C. W. Perkins and J. C. Martin, *J. Am. Chem. Soc.*, **108**, 3211 (1986). - 15) 5: Mp 223 °C. Anal. Found: C, 30.93; H, 2.56%. Calcd for C₁₄H₁₂Br₂SeTe: C, 30.76; H, 2.21%. - 16) Akiba and co-workers studied the transannular bond formation between the antimony and the nitrogen in the halogeno derivatives of dibenz[c,f][1,5]azastibocine; K. Ohkata, M. Ohnishi, and K.-y. Akiba, *Tetrahedron Lett.*, **29**, 5401 (1988). - 17) **6**: Mp 157 °C; FT-IR (KBr) 741 cm⁻¹. Anal. Found: C, 42.00; H, 3.06%. Calcd for $C_{14}H_{12}OSeTe$: C, 41.70; H, 3.00%. - 18) The reaction of 3 with aqueous NaOH solution gave a complex mixture which could not be characterized. - 19) Akiba and co-workers reported that the transannular interaction between the sulfinyl group and the amino group in *N*-methyl 5*H*,7*H*-dibenzo[*b*,*g*][1,5]thiazocine was confirmed by ¹H NMR spectroscopy and X-ray analysis.^{1a)} (Received October 28, 1992)